
Hans-Petter Halvorsen

https://www.halvorsen.blog

LabVIEW MathScript

1. LabVIEW MathScript
– Basic Examples
– Plotting Examples
– Simulation Examples
– Create Functions

2. MathScript Node

Contents

• You need to install an additional module called
LabVIEW MathScript Module.

• You should also install LabVIEW Control Design
and Simulation Module because it adds Control
and Simulation features to the MathScript Module

• This module can be used in 2 different ways:
– LabVIEW MathScript – A separate Application similar

to MATLAB (But you need to have LabVIEW installed)
– MathScript Node integrated in LabVIEW Code

LabVIEW MathScript

• Add-on Module for LabVIEW where we can do text-
based programming and simulations

• GUI and syntax are identical with MATLAB
• You can run MATLAB scripts in LabVIEW MathScript

with almost no changed needed (assuming you use
the core functionality or the MATLAB Control Toolbox)

• LabVIEW MathScript don’t have the same speed,
flexibility and toolboxes as MATLAB

• If you know MATLAB, you know LabVIEW MathScript

LabVIEW MathScript Module

• You need to install LabVIEW and the
LabVIEW MathScript Module.
• When necessary software is installed,

start MathScript by open LabVIEW
• From the LabVIEW menu, select Tools

-> MathScript Window...

How do you start using MathScript?

xxx

Hans-Petter Halvorsen

https://www.halvorsen.blog

Basic Examples

Command Window
The Command Window is the main window in MathScript. Use the Command Window to
enter variables and to run functions and M-files scripts (more about m-files later). Its like an
advanced calculator!

Use “Arrow Up” in order to
browse through old Commands

(“Command History”)

Hit “ENTER” in order to
execute a command

Case Sensitive Variables
MathScript/MATLAB is case sensitive! The variables x and X are not the same.

>> x=3
x =

3

>> y=4;
>>

>> x=5;
>> X=6;
>> x+X

ans =
11

Unlike many other languages, where the semicolon is used to terminate commands, in
MathScript/MATLAB the semicolon serves to suppress the output of the line that it
concludes.

clear/clc

>> clear
>> clc

The “clear” command deletes all
existing variables” from the memory

The “clc” command removes everything
from the Command Window
clc – clear command window

Built-in Constants

>> r=5;
>> A=pi*r^2

A =
78.5398

Name Description

i, j Used for complex numbers, e.g., z=2+4i

pi π

inf ∞, Infinity

NaN Not A Number. If you, e.g., divide by zero, you get NaN

>> z1=3+3i;
>> z2=3+5i;
>> z = z1+z2
z =

6.0000 + 8.0000i

>> a=2;
>> b=0;
>> a/b

Mathematical Expressions

Calculate this expression, try with
different values for 𝑥 and 𝑦

MATLAB
log(x)
log10(x)
sqrt(x)
exp(x)
x^2

>> x=2;
>> y=3*x+2/2
y =

7
>> y=(3*x+2)/2
y =

4

W
hich are correct?

Mathematical Expressions

>> x=2;, y=2
>> z = 3*x^2 + sqrt(x^2 + y^2) + exp(log(x))

ans =
16.8284

...

Solving Mathematical Problems
We will use MathScript in order to find the surface area of a
cylinder based on the height (ℎ) and the radius (𝑟) of the cylinder

𝐴 =?

𝑟 = 3

ℎ = 8

Solving Mathematical Problems

>> h=8
>> r=3
>> A = 2*pi*r^2 +2*pi*r*h;
A =
207.3451

MathScript Code:

Hans-Petter Halvorsen

https://www.halvorsen.blog

Plotting

Plotting

x = 0:5;

y = 2*x + 4;

plot(x,y)

y(t) = 2x + 4
Example:

interval on x axis

Useful MathScript functions for plotting: plot(), xlabel(), ylabel(), title(), grid()

Some Examples
>> x = 0:0.1:2*pi;
>> y = sin(x);
>> plot(x,y)

>> x = 0:0.1:2*pi;
>> y = sin(x);
>> y2 = cos(x);
>> plot(x,y, x,y2)

...
>> plot(x,y,'r*', x,y2,'g+')

Plotting Functions
Name Description

plot Create a Plot

figure Define a new Figure/Plot window

grid
on/off

Create Grid lines in a plot

title Add Title to current plot

xlabel Add a Label on the x-axis

ylabel Add a Label on the x-axis

axis Set xmin,xmax,ymin,ymax

hold
on/off

Add several plots in the same Figure

legend Create a legend in the corner (or at a
specified position) of the plot

subplot Divide a Figure into several Subplots

>> x=0:0.1:2*pi;
>> y=sin(x);
>> plot(x,y)
>> title('Plot Example')
>> xlabel('x')
>> ylabel('y=sin(x)')
>> grid on
>> axis([0,2*pi,-1,1])
>> legend(’Temperature')

Plotting functions:

Examples:

Subplots
>> x=0:0.1:2*pi;
>> y=sin(x);
>> y2=cos(x);

>> subplot(2,1,1)
>> plot(x,y)

>> subplot(2,1,2)
>> plot(x,y2)

>> x=0:0.1:2*pi;
>> y=sin(x);
>> y2=cos(x);
>> y3=tan(x);

>> subplot(3,1,1)
>> plot(x,y)

>> subplot(3,1,2)
>> plot(x,y2)

>> subplot(3,1,3)
>> plot(x,y3)

>> x=0:0.1:2*pi;
>> y=sin(x);
>> y2=cos(x);
>> y3=tan(x);
>> y4=atan(x);

>> subplot(2,2,1)
>> plot(x,y)

>> subplot(2,2,2)
>> plot(x,y2)

>> subplot(2,2,3)
>> plot(x,y3)

>> subplot(2,2,4)
>> plot(x,y4)

Hans-Petter Halvorsen

https://www.halvorsen.blog

Simulation Example

Simulation Example
Assume the following model (Differential Equation):

�̇� = −𝑎𝑥 + 𝑏𝑢
We start by setting 𝑎 = 0.25 and 𝑏 = 2

In order to simulate this system in LabVIEW
MathScript we typically need to find the
discrete differential equation.

We can use e.g., the Euler Approximation:

�̇� ≈
𝑥 𝑘 + 1 − 𝑥(𝑘)

𝑇!
Where 𝑇! is the Sampling Time

Then we get:
𝑥 𝑘 + 1 − 𝑥(𝑘)

𝑇!
= −𝑎𝑥 𝑘 + 𝑏𝑢 𝑘

Finally, we get:
𝑥 𝑘 + 1 = 1 − 𝑇!𝑎 𝑥 𝑘 + 𝑇!𝑏𝑢(𝑘)

This is the discrete version of the differential equation

Code % Simulation of discrete model
clear, clc

% Model Parameters
a = 0.25;b = 2;

% Simulation Parameters
Ts = 0.1; %s
Tstop = 20; %s
uk = 1; % Step Response
x(1) = 0;

% Simulation
for k=1:(Tstop/Ts)

x(k+1) = (1-a*Ts).*x(k) + Ts*b*uk;
end

% Plot the Simulation Results
k=0:Ts:Tstop;
plot(k,x)
grid on

Hans-Petter Halvorsen

https://www.halvorsen.blog

Creating Functions

Create Function

Create Functions in MathScript

Celsius to Fahrenheit

function Tf = fahrenheit(Tc)

Tf = (9/5)*Tc + 32;

Tc = 23;
Tf = fahrenheit(Tc)

Step 1: Create the Function

The function needs to be saved as
“fahrenheit.m” on your hard drive

This can be done from Command
window or Script window

inputReturn value
Function name

Step 2: Execute the Function

The function bodyReturn value

Hans-Petter Halvorsen

https://www.halvorsen.blog

Tips and Tricks

Tips and Tricks
% This is a comment
x=2; % Comment2
y=3*x % Comment3

Decimal sign: Use ”.”– NOT ”,” !
i.e. y=3.2 – not y=3,2

Use Comments (%)
DO NOT use ”spaces” in Filename or names that are
similiar to built-in functions in MathScript/MATLAB!

Functions:
• Only ONE function in each File!
• The Filename (.m) AND the Name of the Function MUST be

the same!

Use english names on variables, functions, files, etc. This
is common practice in programming!
Use always variables – Do not use numbers directly in the
expressions!

a=2;
b=4;
y=a+
b

y=2+
4

Yes:
No:

clear
clc
close all
…

Always include these
lines in your Script

- but that have to make sense!

Tips and Tricks

Mathematical expressions:
The following applies in MathScript/MATLAB

A Golden Rule: One Task – one file, i.e. DONT
put all the Tasks in one single file!!

x = 2;
y = 2;
z = 3*x^2 + sqrt(x^2 + y^2)+ exp(log(x))

Use help in order to find out
how to use a function in
MathScript/MATLAB. In order
to get help for the tf
function, type the following
in the Command window:
help tf

Greek letters: In math and control theory it is common to use Greek
letters in formulas, etc. These cannot be used directly in
MathScript/MATLAB, so you need to find other good alternatives.
Examples:
𝜔! – w0
𝜁 – zeta or just z
etc.

Hans-Petter Halvorsen

https://www.halvorsen.blog

MathScript Node

MathScript Node
With MathScript Node you can create and use
MathScript/MATLAB code within LabVIEW

Example

Alternative: Formula Node

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

