

LabVIEW MathScript

Contents

- 1. LabVIEW MathScript
 - Basic Examples
 - Plotting Examples
 - Simulation Examples
 - Create Functions
- 2. MathScript Node

LabVIEW MathScript

- You need to install an additional module called LabVIEW MathScript Module.
- You should also install LabVIEW Control Design and Simulation Module because it adds Control and Simulation features to the MathScript Module
- This module can be used in 2 different ways:
 - LabVIEW MathScript A separate Application similar to MATLAB (But you need to have LabVIEW installed)
 - MathScript Node integrated in LabVIEW Code

LabVIEW MathScript Module

- Add-on Module for LabVIEW where we can do textbased programming and simulations
- GUI and syntax are identical with MATLAB
- You can run MATLAB scripts in LabVIEW MathScript with almost no changed needed (assuming you use the core functionality or the MATLAB Control Toolbox)
- LabVIEW MathScript don't have the same speed, flexibility and toolboxes as MATLAB
- If you know MATLAB, you know LabVIEW MathScript

How do you start using MathScript?

- You need to install LabVIEW and the LabVIEW MathScript Module.
- When necessary software is installed, start MathScript by open LabVIEW
- From the LabVIEW menu, select Tools
 - -> MathScript Window...

LabVIEW MathScript File Edit View Operate Tools Window Help Output Window Variables Script History For help, enter 'help classes' ×. >> Teles ₩ **5** 0± 0« »0 x = 1 x = 22 3v = 3*x + 2y = 8 Run your Script and the results are available in the Output Window **Output Window** Here you can see the results Script Window of the calculations This is the Editor where you create your program (script). The Script can be saved as a .m file Command Window help plot **Command Window** You can use the Command Window to enter singel commands

Untitled

Line: 1, Column: 3

Idle

Basic Examples

Command Window

The Command Window is the main window in MathScript. Use the Command Window to enter variables and to run functions and M-files scripts (more about m-files later). Its like an advanced calculator!

Case Sensitive Variables

MathScript/MATLAB is **case sensitive**! The variables *x* and *X* are not the same.

Unlike many other languages, where the semicolon is used to terminate commands, in MathScript/MATLAB the semicolon serves to suppress the output of the line that it concludes.

clear/clc

The "clear" command deletes all existing variables" from the memory

The "clc" command removes everything from the Command Window clc – clear command window

Built-in Constants

Name	Description
i, j	Used for complex numbers, e.g., $z=2+4i$
pi	П
inf	∞, Infinity
NaN	Not A Number. If you, e.g., divide by zero, you get NaN

Mathematical Expressions

$$y(x) = \frac{3x+2}{2}$$

 $y(2) =?$
>> x=2;

>> y=3*x+2/2

7

>> y=(3*x+2)/2

V =

V =

Which are correct?

Calculate this expression, try with different values for x and y

$$z = 3x^2 + \sqrt{x^2 + y^2} + e^{\ln(x)}$$

Mathematical Expressions

$$z = 3x^2 + \sqrt{x^2 + y^2} + e^{\ln(x)}$$

>> x=2;, y=2
>> z = 3*x^2 + sqrt(x^2 + y^2) + exp(log(x))
ans =
 16.8284
...

Solving Mathematical Problems

We will use MathScript in order to find the surface area of a cylinder based on the height (h) and the radius (r) of the cylinder

Solving Mathematical Problems

MathScript Code:

>> h=8
>> r=3
>> A = 2*pi*r^2 +2*pi*r*h;
A =
207.3451

Plotting

Plotting

Example:

Useful MathScript functions for plotting: plot(), xlabel(), ylabel(), title(), grid()

Some Examples

>> x = 0:0.1:2*pi;
>> y = sin(x);
>> plot(x,y)

>> plot(x,y,'r*', x,y2,'g+')

File Edit View Insert Tools Desktop Window Help	لا ا
친 🖆 🛃 🎍 👠 🍳 🔍 🕲 🐙 🖋 - 🗔 🔲 🗉 💷	
0.8	
0.6	
0.4	
n2	
-0.2 -	
-0.4	
-0.6 -	
-0.8	
-10 1 2 3 4 5 6 7	

Plotting Functions

Plotting functions:

Name	Description
plot	Create a Plot
figure	Define a new Figure/Plot window
grid on/off	Create Grid lines in a plot
title	Add Title to current plot
xlabel	Add a Label on the x-axis
ylabel	Add a Label on the x-axis
axis	Set xmin,xmax,ymin,ymax
hold on/off	Add several plots in the same Figure
legend	Create a legend in the corner (or at a specified position) of the plot
subplot	Divide a Figure into several Subplots

Examples:

- >> x=0:0.1:2*pi; >> y=sin(x);
- >> plot(x,y)
- >> title('Plot Example')
- >> xlabel('x')
- >> ylabel('y=sin(x)')
- >> grid on
- >> axis([0,2*pi,-1,1])
- >> legend('Temperature')

Subplots

>> subplot(2,1,1)
>> plot(x,y)

>> subplot(2,1,2)
>> plot(x,y2)

- >> x=0:0.1:2*pi;
- >> y=sin(x);
- >> y2=cos(x);
- >> y3=tan(x);
- >> subplot(3,1,1)
- >> plot(x,y)
- >> subplot(3,1,2)
- >> plot(x,y2)
- >> subplot(3,1,3)
- >> plot(x,y3)
 - >> x=0:0.1:2*pi;
 - >> y=sin(x);
 - >> y2=cos(x);
 - >> y3=tan(x);
 - >> y4=atan(x);
 - >> subplot(2,2,1)
 - >> plot(x,y)
 - >> subplot(2,2,2)
 - >> plot(x,y2)
 - >> subplot(2,2,3)
 - >> plot(x,y3)
 - >> subplot(2,2,4)
 - >> plot(x,y4)

Simulation Example

Simulation Example

Assume the following model (Differential Equation):

 $\dot{x} = -ax + bu$

We start by setting a = 0.25 and b = 2

In order to simulate this system in LabVIEW MathScript we typically need to find the <u>discrete</u> differential equation.

We can use e.g., the **Euler Approximation**:

Then we get: $\frac{x(k+1) - x(k)}{T_s} = -ax(k) + bu(k)$ Finally, we get: $\frac{x(k+1) = (1 - T_s a)x(k) + T_s bu(k)$

 $\dot{x} \approx \frac{x(k+1) - x(k)}{T_s}$

Where T_s is the Sampling Time

This is the discrete version of the differential equation

Code


```
% Simulation of discrete model
clear, clc
```

% Model Parameters
a = 0.25;b = 2;

% Simulation Parameters
Ts = 0.1; %s
Tstop = 20; %s
uk = 1; % Step Response
x(1) = 0;

```
% Plot the Simulation Results
k=0:Ts:Tstop;
plot(k,x)
grid on
```


Creating Functions

Create Function

LabVIEW MathScript							_	\times
File Edit View Operate	e Tools Wind	dow Help						
Output Window				Variables	Script	History		
x =	2		^		ton a	3 🖬 🎗 🗅 🚺 👫 👫 Ot OK >) answer = add(x,y)		^
>>у=4				3 ans	wer =)	х + у;		
У =								
	4							
>>add(x,y)								
ans =								
1	6							
			*					
Command Window								
add(x,y)			^					
20.0			ldle	add.m	Line:	e: 3, Column: 16		~

Create Functions in MathScript

Celsius to Fahrenheit

$$T_F = \frac{9}{5}T_C + 32$$

Step 1: Create the Function

The function needs to be saved as "fahrenheit.m" on your hard drive

Step 2: Execute the Function

This can be done from Command window or Script window

Tips and Tricks

Tips and Tricks

Use Comments (%)

00	This	is	а	comment
X=	=2; %	Cor	nme	ent2
У=	=3*x %	e Co	omn	ment3

- but that have to make sense!

Decimal sign: Use "." – NOT "," ! i.e. *y*=3.2 – not *y*=3,2

Use english names on variables, functions, files, etc. This is common practice in programming! Use always variables – Do not use numbers directly in the expressions! Yes:

clear clc close all •••

No:

y=2+

DO NOT use "spaces" in Filename or names that are similiar to built-in functions in MathScript/MATLAB!

Always include these lines in your Script

Functions:

- Only ONE function in each File!
- The Filename (.m) AND the Name of the Function MUST be the same!

Tips and Tricks

z(2,2) = ?

Greek letters: In math and control theory it is common to use Greek letters in formulas, etc. These cannot be used directly in MathScript/MATLAB, so you need to find other good alternatives. Examples:

 $\omega_0 - w0$ $\zeta - zeta or just z etc.$

A Golden Rule: One Task – one file, i.e. <u>DONT</u> put all the Tasks in one single file!!

$$z = 3x^2 + \sqrt{x^2 + y^2} + e^{\ln(x)}$$

x = 2;
y = 2;
z =
$$3 \times 2 + sqrt(x^2 + y^2) + exp(log(x))$$

Use help in order to find out how to use a function in MathScript/MATLAB. In order to get help for the tf function, type the following in the Command window: help tf

Mathematical expressions: The following applies in MathScript/MATLAB

x ²	x^2
\sqrt{x}	<pre>sqrt(x)</pre>
ln(x)	log(x)
$\log(x)$	log10 (x)
e ^x	exp (x)
π	pi

MathScript Node

MathScript Node

With MathScript Node you can create and use MathScript/MATLAB code within LabVIEW

Example

_ □

<

Alternative: Formula Node

Hans-Petter Halvorsen

University of South-Eastern Norway

www.usn.no

E-mail: hans.p.halvorsen@usn.no

Web: https://www.halvorsen.blog

